Л2. Определители Основные свойства определителей. Методы вычисления определителей Матрицы Действия с матрицами. Обратные матрицы Ранг матрицы Определение. Матрицей размера $m \times n$ называется пря моугольная таблица чисел, состоя щая из m строк и n столбцов.

Числа, стоящие в матрице, называются ее элементами и обозначаются переменной (буквой) с двумя индексами, первый из которых равен номеру строки, а второй — номеру столбца в пересечении которых находится данный элемент. Элементы матрицы обычно обозначаются малыми буквами, а сами матрицы — соответствующими заглавными. Если матрица задается перечислением своих элементов, то таблица элементов заключается в круглые или квадратные скобки.

На пример, матрица A раз мера 2×3 запис ывается в виде: $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}$.

Эта матрица состоит из 6 элементов a_{ij} , где i=1,2 — есть номер строки, j=1,2,3 — номер столбца.

Матрицы используются в технических науках и в экономике для записи табличной информации. В программировании матрицы называются двумерными массивами.

Матрица, y которой число строк равно числу столбцов, называется квадратной, а число строк (столбцов) этой квадратной матрицы называется ее порядком Квадратная матрица n-го порядка состоит из n^2 элементов.

Ка ждой квадратной матрице по определенному правилу сопоставляется число, которое называется определителем этой матрицы Определитель, в отличие от матрицы обозначается вертикальными линиями:

$$|A| = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

Сформулируем правила вычисления определителей 1-го, 2-го, 3-го порядков.

1). Определителем матрицы 1-го порядка называется элемент этой матрицы Например, если A = (5), то |A| = 5. 2). Определителем матрицы 2-го порядка называется число

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

На пример: $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 1 \cdot 4 - 2 \cdot 3 = -2$.

Определителем матрицы 3-го порядка называется число

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}.$$

Это правило называется правилом треугольников (Сарр юса)

На пример:
$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = 1 \cdot 5 \cdot 9 + 2 \cdot 6 \cdot 7 + 3 \cdot 4 \cdot 8 - 3 \cdot 5 \cdot 7 - 2 \cdot 9 \cdot 4 - 1 \cdot 6 \cdot 8 = 0$$

Определение: Транспонированной матрицей для матрицы A называется матрица A^{T} , столбцами которой являются соответствующие строки матрицы A.

Диагональ, исходящая из левого верхнего угла матрицы, называется ее главной диагональю Транспонированная матрица $A^{\rm T}$ симметрична A относительно главной диагонали.

Рассмотрим теперь свойства определителей, справедливые для определителей любого порядка. Для определённости будем их записывать для определителей 3-го порядка.

- 1. Определители квадратной матрицы A и ее транспонированной A^{T} совпадают, т. е. $|A| = |A^{\mathrm{T}}|$.
- 2. При перемене местами двух строк матрицы, ее определитель меняет свой знак на противоположный.
 - 30. Определитель матрицы с двумя одинаковыми строками равен 0.
- 4^{0} . Если все элементы одной строки квадратной матрицы умножить на число k, то ее определитель умножится на это число.
- 5^{0} . Если квадратная матрица содержит нулевуюстроку, то ее определитель равен 0. Это свойство получается из предыдущего при k=0.
- 60. Если одна из строк определителя записывается в виде суммы двух строк, то определитель записывается в виде суммы двух определителей, у которых на месте этой строки стоят соответственно первые и вторые слагаемые. Остальные соответствующие строки всех трех определителей равны
- 7^{0} . Если к одной строке матрицы прибавить другую ее строку, умноженную на число k, то определитель матрицы при этом не из менится.

Определение. Минором элемента a_{ij} называется определитель, составленный из элементов, остав шихся после вынеркивания i - ой строки и j - го столбца, на пересечении которых находится этот элемент.

Определение. Апгебраическим дополнением элемента a_{ij} называется соответствующий минор, умноженный на $(-1)^{ij}$ т.е $A_{ij} = (-1)^{i+j} M_{ij}$, где i — номер строки и j - столбца, на пересечении которых находится данный элемент.

80. (Разложение определителя по элементам некоторой строки). Определитель равен сумме произведений элементов некоторой строки на соответствующие им алгебраические дополнения.

$$|A| = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13}$$

Пример 2

Найдем определитель матрицы $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$, разложив его по элементам

первой строки

$$|A| = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} = 1(-1)^{1+1}\begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} + 2(-1)^{1+2}\begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 3(-1)^{1+3}\begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix} = 1(5 \cdot 9 - 6 \cdot 8) - 2(4 \cdot 9 - 6 \cdot 7) + 3(4 \cdot 8 - 5 \cdot 7) = -3 - 2(-6) + 3(-3) = 0.$$

Формально эта теорема и другие свойства определителей применимы пока только для определителей матриц не выше третьего порядка, поскольку другие определители мы не рассматривали. Следующее определение позволит распространить эти свойства на определители любого порядка.

Определение. Определителем матрицы A n-го порядка называется число, вычисленное с помощью последовательного применения теоремы о разложении и других свойств определителей

Можно проверить, что результат вычислений не зависит от того, в какой последовательности и для каких строк и столбцов применя югся выше указанные свойства. Определитель с помощью этого определения находится однозначно.

Хотя данное определение и не содержит явной формулы для нахождения определителя, оно позволяет находить его путем сведения к определителям матриц мень шего порядка. Такие определения называют рекуррентными.

Определение. Квадратная матрица, у которой ниже главной диагонали стоят нулевые элементы $(a_{ij} = 0 \text{ при } i > j)$ называется верхнетреугольной. Матрица, у которой выше главной диагонали стоят нулевые элементы $(a_{ij} = 0 \text{ при } i < j)$ называется нижнетреугольной.

Верхне и нижнетреугольные матрицы называются треугольными.

Теоре ма. Определитель квадратной треугольной матрицы равен произведению ее элементов, стоя щих на главной диагонали, т. е. $|A| = a_{11}a_{22}...a_{nn}$.

Определение. Квадратная матрица, у которой вне главной диагонали стоят нулевые элементы, называется диагональной.

Диагональная матрица является и верхне — и нижнетреугольной, поэтому ее определитель также равен произведению элементов, стоя щих на главной диагонали.

Диагональная матрица, у которой на главной диагонали стоят только единичные элементы, называется единичной матрицей. Определитель единичной матрицы равен 1, т.е. |E|=1.

Определение. Произведением матрицы A размера $m \times n$ на число λ , называется матрица $B = \lambda A$ размера $m \times n$, каждый элемент b_{ij} которой равен λa_{ii} .

Определение. Суммой матриц A и B одинакового размера называется матрица C = A + B того же размера, каждый элемент c_{ij} которой равен $a_{ij} + b_{ij}$. Матрицы разного размера складывать нельзя.

Эт и операции облада ют свойства ми: а) коммутативности (A+B=B+A); б) ассоциативности ((A+B)+C=A+(B+C)); в) дистрибутивности $(\lambda(A+B)=\lambda A+\lambda B)$.

Операцию умножения матриц определим в два этапа.

Определение. Произведением строки A из n элементов на столбец B из n элементов называется число AB, равное сумме произведений соответствующих элементов строки и столбца.

Строку и столбец разной длины перемножать нельзя.

Определение. Произведением матрицы A размера $m \times n$ на матрицу B размера $n \times k$ называется матрица C размера $m \times k$, каждый элемент c_{ij} которой равен произведению i — ой строки матрицы A на i — ый столбец матрицы B, т. е.

$$C_{ij} = a_{il}b_{lj} + a_{i2}b_{2j} + \dots + a_{in}b_{nj} = \sum_{l=1}^{n} a_{il}b_{lj}$$
Пример 4 Пусть $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \ B = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix}.$ Найдём матрицы AB и BA .
$$AB = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} (1 \cdot 0 + 2 \cdot 2) & (1 \cdot 1 + 2 \cdot 3) \\ (3 \cdot 0 + 4 \cdot 2) & (3 \cdot 1 + 4 \cdot 3) \end{pmatrix} = \begin{pmatrix} 4 & 7 \\ 8 & 15 \end{pmatrix}$$

$$BA = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} (0 \cdot 1 + 1 \cdot 3) & (0 \cdot 2 + 1 \cdot 4) \\ (2 \cdot 1 + 3 \cdot 3) & (2 \cdot 2 + 3 \cdot 4) \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ 1 & 16 \end{pmatrix}$$

Мы видим, что $AB \neq BA$, т.е. умножение матриц свойством коммутативности не обладает. Единичная матрица E играет роль единицы при умножении на квадратную матрицу, т.е. для любой квадратной матрицы A верно равенство AE = EA = A.

Произведение матриц соответствующих размеров обладает свойствами:

- а) ассоциативности A(BC) = (AB)C;
- б) дистрибутивности A(B+C) = AB + AC и (B+C)A = BA + CA.

Кроме того, для квадратных матриц $|AB| = |A| \cdot |B|$, т.е. определитель произведения матриц равен произведению их определителей.

Определение. Обратной матрицей для квадратной матрицы A называется такая матрица A^{-1} , что выполняется равенство $A \cdot A^{-1} = A^{-1} \cdot A = E$.

Определение. Квадратная матрица A, определитель которой равен нулю называется вырожденной, матрица, определитель которой не равен нулю называется невырожденной.

Пример 5. Матрица $\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ — вырождена, $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ — невырождена. Ив соотно шения $|A|\cdot |A^{-1}|=|E|=1$ следует, что у вырожденной матрицы не может быгь обратной $(0\cdot |A^{-1}|\neq 1)$.

Определение. Присоединенной матрицей для квадратной матрицы A называется матрица \tilde{A} , элементами которой являются алгебраические дополнения соответствующих элементов матрицы A, т.е.

$$\widetilde{A} = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \dots & \dots & \dots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{pmatrix}.$$

Теоре ма об обратной матрице. Невырожденные матрицы и только они име ют обратные матрицы, которые находятся по формуле $A^{-1} = \frac{1}{|A|} \widetilde{A}^{\mathrm{T}}$. (Здесь $\widetilde{A}^{\mathrm{T}}$ – присоединённая транспонированная матрица).

Ранг матрицы Рассмотрим одну числовую характеристику любой (необязательно квадратной) матрицы Ранг матрицы определяет число так называемых базисных строк или столбцов матрицы, через которые с помощью линейных операций можно получить все остальные строки или столбцы матрицы

Определение. Минором k-го порядка матрицы A называется определитель, составленный из элементов стоя щих на пересечении произвольно выбранных k-столбцов и k-строк этой матрицы

Определение. Рангом матрицы A называется наиболь ший из порядков ее миноров, не равных нулю

Он обозначается символом r(A) или rangA. r(A) — целое неотрицательное число, не превосходя цее числа строк и столбцов матрицы A. Ранг нулевой матрицы считается равным нулю

Для нахождения r(A) формально необходимо рассмотреть все миноры A, начиная с 1-го порядка и проверить их на вырожденность.

Метод окаймля ющих миноров позволяет сократить эту процедуру. Он состоит в следующем Выбираем любой невырожденный минор 1-го порядка (ненулевой элемент матрицы A). Обозначим его через M_1 . Затем рассматриваем все миноры 2-го порядка, содержащие M_1 (окаймля ющие его). Если все они вырождены, то r(A) = 1, если нет, то невырожденный минор 2-го порядка обозначаем через M_2 и так далее. Если у матрицы A есть невырожденный минор k-го порядка и все окаймля ющие его миноры (если они есть) вырождены, то r(A) = k, иначе выбираем минор M_{k+1} и продолжаем этот процесс.

Пример 6. Найдем ранг матрицы $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. У матрицы выбираем невырожденный минор 1-го порядка $M_1 = (a_{11}) = 1$. Среди окаймля ющих его миноров есть один невырожденный $M_2 = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$. Единственный минор 3-го порядка окаймля ющий $M_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 1$. Единственный минор 3-го $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = 0$, то A = вырождена и A =

Рассмотрим е це один метод нахождения r(A), который называется методом элементарных преобразований или методом Гаусса.

Эле ментарными преобразования ми для матрицы A называ югся следующие ее преобразования.

- 1. Перестановка строк или столбцов местами.
- 2. Умножение строки или столбца на ненулевой коэ ффициент.
- 3. Прибавление к одной строке или столбцу матрицы другой её строки или столбца, умноженной на некоторое число k.
 - 4. Зачеркивание нулевой строки или столбца матрицы

Матрица B, полученная из A с помощь ю элементарных преобразований, называется эквивалентной ей и обозначается в виде $A \sim B$.

Теорема. При элементарных преобразованиях ранг матрицы не из меняется.

Теорема. Ранг треугольной матрицы равен количеству ее ненулевых строк.